Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-06-18

Structured low-rank approximation: Theory, algorithms, and applications

Ziel

Today's state-of-the-art methods for data processing are model based. We propose a fundamentally new approach that does not depend on an explicit model representation and can be used for model-free data processing. From a theoretical point of view, the prime advantage of the newly proposed paradigm is conceptual unification of existing methods. From a practical point of view, the proposed paradigm opens new possibilities for development of computational methods for data processing.

The underlying computational tool in the proposed setting is low-rank approximation. Recent work by the applicant, co-workers, and others has demonstrated advantages of computational methods based on low-rank approximation over classical methods, based on solution of linear systems of equations. In this proposal, we will further advance the theory and algorithms for low-rank approximation by developing robust and efficient local optimisation methods and methods based on convex relaxations.

Low-rank approximation has applications in systems and control, signal processing, computer algebra, and machine learning, to name a few. Generic examples in system theory and signal processing are model reduction and system identification. Dimensionality reduction, classification, and information retrieval problems in machine learning can be formulated and solved as low-rank approximation problems, thus benefiting from the theory, algorithms, and numerical software tools developed in this research proposal. Beyond the scope of the proposal, we envisage that the newly proposed paradigm will catalyse cross-disciplinary research, leading to selection of the best theoretical tools and computational methods available as well as development of new ones by a synergy of ideas from different application domains.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

ERC-2010-StG_20091028
Andere Projekte für diesen Aufruf anzeigen

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-SG - ERC Starting Grant

Gastgebende Einrichtung

VRIJE UNIVERSITEIT BRUSSEL
EU-Beitrag
€ 563 852,00
Adresse
PLEINLAAN 2
1050 BRUSSEL
Belgien

Auf der Karte ansehen

Region
Région de Bruxelles-Capitale/Brussels Hoofdstedelijk Gewest Région de Bruxelles-Capitale/ Brussels Hoofdstedelijk Gewest Arr. de Bruxelles-Capitale/Arr. Brussel-Hoofdstad
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten

Begünstigte (2)

Mein Booklet 0 0