Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Discrete bIOimaging perCeption for Longitudinal Organ modElling and computEr-aided diagnosiS

Objectif

Recent hardware developments from the medical device manufacturers have made possible non-invasive/in-vivo acquisition of anatomical and physiological measurements. One can cite numerous emerging modalities (e.g. PET, fMRI, DTI). The nature (3D/multi-phase/vectorial) and the volume of this data make impossible in practice their interpretation from humans. On the other hand, these modalities can be used for early screening, therapeutic strategies evaluation as well as evaluating bio-markers for drugs development. Despite enormous progress made on the field of biomedical image analysis still a huge gap exists between clinical research and clinical use. The aim of this proposal is three-fold. First we would like to introduce a novel biomedical image perception framework for clinical use towards disease screening and drug evaluation. Such a framework is expected to be modular (can be used in various clinical settings), computationally efficient (would not require specialized hardware), and can provide a quantitative and qualitative anatomo-pathological indices. Second, leverage progress made on the field of machine learning along with novel, efficient, compact representation of clinical bio-markers toward computer aided diagnosis. Last, using these emerging multi-dimensional signals, we would like to perform longitudinal modelling and understanding the effects of aging to a number of organs and diseases that do not present pre-disease indicators such as brain neurological diseases, muscular diseases, certain forms of cancer, etc.

Such a challenging and pioneering effort lies on the interface of medicine (clinical context), biomedical imaging (choice of signals/modalities), machine learning (manifold representations of heterogeneous multivariate variables), discrete optimization (computationally efficient inference of higher-order models), and bio-medical image inference (measurement extraction and multi-modal fusion of heterogeneous information sources).

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

ERC-2010-StG_20091028
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-SG - ERC Starting Grant

Institution d’accueil

ECOLE CENTRALE DES ARTS ET MANUFACTURES
Contribution de l’UE
€ 1 500 000,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Bénéficiaires (1)

Mon livret 0 0