Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Multiplexed protein and kinase activity detection assays in complex media using impedance/capacitance

Objective

"The detection and quantification of protein biomarkers in biological samples lies central to proteomics, drug design, disease prognosis and therapeutic development. The generation of viable protein microarrays is, though, challenging. The first protein microarrays were built on
antibodies. Unfortunately antibodies do not function well in the microarray format, because typically only a small fraction (20%) specifically recognizes the target protein. Current antibody based optical assays are commonly based on sandwich assays in which antigen binding to the immobilised antibody is detected through the use of a secondary, labeled, antibody. Though sensitive, this method is laborious and often requires a specifically-labelled secondary antibody for every antigen of interest.
Labelling protocols are potentially perturbative, can also be time consuming and may lead to high background signals. Alternative protein receptive molecules are thus of considerable interest. In recent years, the host group has developed, with a team in Leeds, optical and electrical assays based on the use of peptide aptamers (highly specific protein receptors built into the surface of robust scaffold proteins). These can be immobilized with controlled surface orientation on a variety of surfaces. The aim of this proposal is to utilize this experience in developing highly sensitive electrical protein assays using capacitance and impedance (AC, DC, Faradaic and Non Faradaic). Through appropriate surface chemical methods such assays will be operable in complex fluid such as cell lysates and blood. Being electrical they are also readily multiplexed at comparatively low cost, enabling simultaneous detection of multiple targets. The linear range potentially
accessible within such arrays is considerable, as is the potential clinical benefit."

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2010-IIF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IIF - International Incoming Fellowships (IIF)

Coordinator

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
EU contribution
€ 280 680,00
Address
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
United Kingdom

See on map

Region
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0