Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Mechanical Amplification in Carbon-based NanoElectroMechanical Systems

Objectif

"Nanoelectromechanical systems (NEMS) are very promising for sensing purposes, information technology, or exploration of quantum mechanics in extended bodies. A decisive parameter for any oscillator is the quality factor, Q, determining how much energy the system dissipates during one oscillation period. A high Q signifies large oscillator amplitudes and a sharp resonance. Although NEMS resonators display quality factors up to 10^6, their amplitudes are typically in the pm range or below, which makes the conversion into a readable electrical signal extremely challenging.

Traditionally, the mechanical motion is immediately translated into an electrical signal, which is then amplified with high gain. Such electrical amplification creates an additional noise floor that limits the signal resolution even at cryogenic temperatures. To overcome this limit, we propose two stategies in order to enhance a mechanical signal before its conversion into an electrical current: parametric amplification (PA) and self-sustained oscillations (SSO).

PA describes the augmentation of the amplitude of an oscillator by a periodic modulation of the spring constant. In other fields of physics and engineering, PA has already been studied and implemented, but suspended carbon nanotubes (CNT) and graphene strips appear especially promising since the spring constant of these oscillators can be tuned over a broad range by a backgate voltage.

SSO describes in our context the creation of a high amplitude mechanical oscillation using a d.c. biased electron current as power source. These oscillations are expected to produce very sharp resonances with a high effective Q. Suspended CNT resonators are excellent candidates for SSO due to the strong coupling between the mechanical and charge degrees of freedom.

Once successfully developed, we intend to use both PA and SSO in mass sensing experiments with CNT resonators, aiming at a sensitivity of the mass of a single nucleus, 1 yg."

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

FP7-PEOPLE-2010-IEF
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MC-IEF - Intra-European Fellowships (IEF)

Coordinateur

FUNDACIO INSTITUT CATALA DE NANOCIENCIA I NANOTECNOLOGIA
Contribution de l’UE
€ 173 380,80
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée
Mon livret 0 0