Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-06-18

Algorithms and Complexity of Constraint Satisfaction Problems

Ziel

Constraint satisfaction problems (CSP) form a general framework that captures a large variety of algorithmic problems. Due to their generality, CSPs are ubiquitous in several areas such as, for example, artificial intelligence, database theory and statistical physics. Therefore it is not surprising that their study is of prominent importance also in computational complexity theory. The proposed research aims at studying algorithmic issues related to CSPs from the perspective of computational complexity. The project consists of two parts.

Firstly, we intend to widen the current understanding of algorithmic approaches to solving CSPs with a particular focus on the propositional satisfiability problem SAT. Recent years have seen an immense increase in the efficiency of practical algorithms solving the propositional satisfiability problem - so-called SAT solvers. Today we still do only have a limited understanding of the reasons for this increase.
We will study these reasons. This will, among other things, include studying structural restrictions of input formulas which are likely to be relevant in practice. Along similar lines we will also examine the capabilities of other algorithmic approaches which are applicable to CSPs in general.

Secondly, we will study weighted extensions of CSPs from a structural point of view. Over the past few years, these versions of CSPs have received increased attention in the context of counting complexity. A main motivation for studying them arises from their connection to so-called spin glass models from statistical physics. Although we have a quite good understanding of the complexity of exactly computing them, we still have only little knowledge of the extent to which these weighted versions of CSPs can be approximated efficiently. The research project aims at extending this knowledge significantly.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

FP7-PEOPLE-2010-IEF
Andere Projekte für diesen Aufruf anzeigen

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

MC-IEF - Intra-European Fellowships (IEF)

Koordinator

Consorci Centre de Recerca Matematica
EU-Beitrag
€ 159 865,60
Adresse
FACULTAD CIENCIES UAB APRATADO 50
08193 Bellaterra
Spanien

Auf der Karte ansehen

Region
Este Cataluña Barcelona
Aktivitätstyp
Research Organisations
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten
Mein Booklet 0 0