Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

The Approximation Problem in Computational ElectroMagnetics

Objectif

The proposal is focused on computational electromagnetics (CEM) with emphasis on the moment method (MoM) and its application to the numerical solution of integral equations (IEs) arising in electromagnetic (EM) scattering by either perfectly-conducting or homogeneous dielectric objects in both 2-D and 3-D geometries. Particularly it addresses four research objectives (ROs). RO1 concerns a priori and a posteriori error analyses for the Reduced Basis Method on account of its application to popular IEs in EM scattering theory (i.e. EFIE, MFIE, and CFIE). RO2 is aimed to shed light on the intimate (but quite involved) relationship between properties of the relevant integral operators underlying our preferred EM models and analogous properties of finite ranked operators resulting from their MoM discretization. This is expected to provide insights for performance and reliability improvements of common iterative techniques used to solve the corresponding MoM system (i.e. CG, BiCG, and GMRES). RO3 points to contribute to the development and further understanding of the approximation problem in the light of Enflo’s and subsequent work on the existence of Banach spaces lacking Grothendieck’s approximation property. This will be done in regard to the sole EFIE. The issue seems almost completely unexplored, yet, it may be useful to know if and when MoM intrinsically fails to represent certain classes of operators, commonly encountered in EM scattering, by finite ranked operators (e.g. depending on the smoothness of scatterers). This is the deepest theoretical theme addressed by the proposal and represents one of the strongest motivations that has led the fellow to apply at LJLL on the consideration of its researchers’ expertise on foundations of numerical methods. Finally RO4 regards numerical experimentation. It will aid the fellow in the development and testing of novel MoM-based schemes for EM scattering problems, but also in the refinement of existing analog techniques.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

FP7-PEOPLE-2010-IEF
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MC-IEF - Intra-European Fellowships (IEF)

Coordinateur

UNIVERSITE PIERRE ET MARIE CURIE - PARIS 6
Contribution de l’UE
€ 179 548,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée
Mon livret 0 0