Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-06-18

Dynamic Minimal prior knowledge for model based Computer Vision and Scene Analysis

Ziel

Efficient solutions for open problems in computer vision are often achieved with the help of suitable prior knowledge, e.g. stemming from labeled databases, physical simulation or geometric invariances. Yet it has been largely neglected to analyse the minimal amount of prior knowledge, needed to satisfactory solve computer vision tasks. Even more important, there is need to steer the amount of priors in a dynamic fashion. Especially for scene analysis, database knowledge can become so large and complex, that it cannot be integrated efficiently for optimization. On the other hand, there exist geometric priors which are efficient and compact, but they have to be integrated and exploited explicitly in vision systems. As a consequence there is need to develop methods to conclude from (statistical) database knowledge to geometric prior knowledge and therefore to achieve compressed priors which contain the relevant information from a given database. Besides the efficient regularization during scene analysis, specific tasks require to treat the amount of priors dynamically, e.g. to maintain individualities of patterns or to avoid a bias from a given database. Our beyond state-of-the art research will focus on answering the following questions:

1) How to limit statistical prior knowledge to geometric priors for solving markerless Motion Capture dynamically with sufficient accuracy ?
2) How to stabilize tracking without introducing a database bias, or to enforce individuality ?
3) How to extract (geometric) motion characteristics for individual motion transfer and interpretation ?

Advancing minimal dynamic prior knowledge means to seek for the essence and granularity of priors. This will have a profound impact well beyond computer vision (e.g. for cognitive sciences or robotics). We strongly believe that we have the necessary competence to pursue this project. Preliminary results have been well received by the community

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

ERC-2011-StG_20101014
Andere Projekte für diesen Aufruf anzeigen

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-SG - ERC Starting Grant

Gastgebende Einrichtung

GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOVER
EU-Beitrag
€ 1 430 000,00
Adresse
WELFENGARTEN 1
30167 Hannover
Deutschland

Auf der Karte ansehen

Region
Niedersachsen Hannover Region Hannover
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten

Begünstigte (1)

Mein Booklet 0 0