Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Scalable Bayesian Methods for Machine Learning and Imaging

Objectif

Machine learning seeks to automatize the processing of
large complex datasets by adaptive computing, a core strategy to meet growing
demands of science and applications.
Typically, real-world problems are mapped to penalized estimation tasks (e.g.
binary classification), which are solved by simple efficient algorithms. While
successful so far, I believe this approach is too limited to
realise the potential of adaptive computing. Most of the work, such as data
selection, feature construction, model calibration and comparison, still has to
be done by hand. Demands for automated decision-making (e.g. tuning
data acquisition during an experiment) are not met.

Such problems are naturally addressed by Bayesian reasoning about uncertain
knowledge, which however remains infeasible in most large scale settings.
The main goal of this proposal is to unite the strengths of penalized
estimation and Bayesian decision-making, exploiting the former's advanced state
of the art in order to implement substantial improvements coming with
the latter in large scale applications. A major focus is on improving magnetic
resonance imaging (MRI) by way of new Bayesian technology, driving robust
nonlinear
reconstruction from less data, and optimizing the acquisition through
Bayesian experimental design, applications not previously attempted by machine
learning. Far beyond the reach of present methodology, these goals demand
a novel computational foundation for approximate Bayesian inference through
numerical algorithmic reductions.

This project will have high impact on probabilistic machine learning, raising
the bar for scalable Bayesian computations. It will help to open up a whole new
range of medical imaging applications for machine learning. Moreover,
substantial impact on MRI reconstruction research is anticipated. There is
strong recent interest in savings through compressive sensing, whose full
potential is realised only by way of adaptive technology such as projected
here.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

ERC-2011-StG_20101014
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-SG - ERC Starting Grant

Institution d’accueil

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Contribution de l’UE
€ 1 401 697,20
Adresse
BATIMENT CE 3316 STATION 1
1015 LAUSANNE
Suisse

Voir sur la carte

Région
Schweiz/Suisse/Svizzera Région lémanique Vaud
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Bénéficiaires (1)

Mon livret 0 0