Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-06-18

Scalable Bayesian Methods for Machine Learning and Imaging

Obiettivo

Machine learning seeks to automatize the processing of
large complex datasets by adaptive computing, a core strategy to meet growing
demands of science and applications.
Typically, real-world problems are mapped to penalized estimation tasks (e.g.
binary classification), which are solved by simple efficient algorithms. While
successful so far, I believe this approach is too limited to
realise the potential of adaptive computing. Most of the work, such as data
selection, feature construction, model calibration and comparison, still has to
be done by hand. Demands for automated decision-making (e.g. tuning
data acquisition during an experiment) are not met.

Such problems are naturally addressed by Bayesian reasoning about uncertain
knowledge, which however remains infeasible in most large scale settings.
The main goal of this proposal is to unite the strengths of penalized
estimation and Bayesian decision-making, exploiting the former's advanced state
of the art in order to implement substantial improvements coming with
the latter in large scale applications. A major focus is on improving magnetic
resonance imaging (MRI) by way of new Bayesian technology, driving robust
nonlinear
reconstruction from less data, and optimizing the acquisition through
Bayesian experimental design, applications not previously attempted by machine
learning. Far beyond the reach of present methodology, these goals demand
a novel computational foundation for approximate Bayesian inference through
numerical algorithmic reductions.

This project will have high impact on probabilistic machine learning, raising
the bar for scalable Bayesian computations. It will help to open up a whole new
range of medical imaging applications for machine learning. Moreover,
substantial impact on MRI reconstruction research is anticipated. There is
strong recent interest in savings through compressive sensing, whose full
potential is realised only by way of adaptive technology such as projected
here.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

ERC-2011-StG_20101014
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-SG - ERC Starting Grant

Istituzione ospitante

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Contributo UE
€ 1 401 697,20
Indirizzo
BATIMENT CE 3316 STATION 1
1015 LAUSANNE
Svizzera

Mostra sulla mappa

Regione
Schweiz/Suisse/Svizzera Région lémanique Vaud
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Beneficiari (1)

Il mio fascicolo 0 0