Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-06-18

Scalable Bayesian Methods for Machine Learning and Imaging

Cel

Machine learning seeks to automatize the processing of
large complex datasets by adaptive computing, a core strategy to meet growing
demands of science and applications.
Typically, real-world problems are mapped to penalized estimation tasks (e.g.
binary classification), which are solved by simple efficient algorithms. While
successful so far, I believe this approach is too limited to
realise the potential of adaptive computing. Most of the work, such as data
selection, feature construction, model calibration and comparison, still has to
be done by hand. Demands for automated decision-making (e.g. tuning
data acquisition during an experiment) are not met.

Such problems are naturally addressed by Bayesian reasoning about uncertain
knowledge, which however remains infeasible in most large scale settings.
The main goal of this proposal is to unite the strengths of penalized
estimation and Bayesian decision-making, exploiting the former's advanced state
of the art in order to implement substantial improvements coming with
the latter in large scale applications. A major focus is on improving magnetic
resonance imaging (MRI) by way of new Bayesian technology, driving robust
nonlinear
reconstruction from less data, and optimizing the acquisition through
Bayesian experimental design, applications not previously attempted by machine
learning. Far beyond the reach of present methodology, these goals demand
a novel computational foundation for approximate Bayesian inference through
numerical algorithmic reductions.

This project will have high impact on probabilistic machine learning, raising
the bar for scalable Bayesian computations. It will help to open up a whole new
range of medical imaging applications for machine learning. Moreover,
substantial impact on MRI reconstruction research is anticipated. There is
strong recent interest in savings through compressive sensing, whose full
potential is realised only by way of adaptive technology such as projected
here.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

ERC-2011-StG_20101014
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-SG - ERC Starting Grant

Instytucja przyjmująca

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Wkład UE
€ 1 401 697,20
Adres
BATIMENT CE 3316 STATION 1
1015 LAUSANNE
Szwajcaria

Zobacz na mapie

Region
Schweiz/Suisse/Svizzera Région lémanique Vaud
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych

Beneficjenci (1)

Moja broszura 0 0