Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-06-18

Positive Scalar Curvature and Lagrangian Mean Curvature Flow

Obiettivo

The interplay between Geometry and Analysis has been among the most fruitful mathematical ideas in recent years, the most obvious example being Perelman's proof of Poincare' conjecture. The goal of this proposal is to establish a research group that will make significant progress in the following two distinct problems.

Scalar Curvature: A classical theorem in Riemannian Geometry states that nonnegative scalar curvature metrics which are flat outside a compact set must be Euclidean. The equivalent problem for positive scalar curvature is known as the Min-Oo conjecture and, after being checked in many particular cases, was recently disproven by myself and coauthors. I plan to prove optimal results relating positive scalar curvature and area of minimal surfaces. I also plan to show that these manifolds admit an infinite number of minimal surfaces (Yau's conjecture). My approach consists of studying min-max methods in order to obtain existence of higher-index minimal surfaces.

Mean curvature flow: An hard open problem consists in determining which Lagrangians in a Calabi-Yau admit a minimal Lagrangian (SLag) in their isotopy class and a complete answer would have a strong impact in Algebraic Geometry and Mirror Symmetry. A well known approach consists in deforming a given Lagrangian in the direction of its mean curvature and hope to show convergence to a SLag. The difficulty with this method is that finite-time singularities can occur.
I plan to study the regularity theory for this flow and show singularities have codimension two. This would be the ground stage to continue the flow past the singular time. My approach consists in classifying the possible parabolic blow-ups and find monotone quantities which will rule out non SLag blow-ups.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

ERC-2011-StG_20101014
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-SG - ERC Starting Grant

Istituzione ospitante

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Contributo UE
€ 1 100 000,00
Indirizzo
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ London
Regno Unito

Mostra sulla mappa

Regione
London Inner London — West Westminster
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Beneficiari (1)

Il mio fascicolo 0 0