Objective
The Calculus of differential equations has proved to be a very powerful tool for describing the interrelationships between systems. That understanding has transformed many aspects of our world. This success has now reached an important limitation. As the systems we seek to understand increase in dimension and complexity, oscillatory and complex order information becomes much more important, and on normal computational scales the systems of interest often fail to fit the smooth Newtonian paradigm.
Mathematical tools that go beyond that smooth paradigm, and particularly Ito's extension of calculus to systems that have an additional Brownian component, have proved enormously valuable and have helped raised Stochastic Mathematics to the centre of the subject in a period of little more than 60 years. It has provided some of the most important applications of mathematics (spanning Neuroscience, Finance, Engineering, Image processing) over the second half of the last century.
In the late 1990s a new tool, the theory of rough paths, began to emerge. The mathematical aspects have been developed strongly by probability theorists to describe couplings between systems that are completely outside the Ito framework, by analysts to understand the solutions to certain non-linear vector valued PDEs, by classical analysts interested in the non-linear Fourier transform, and by those desiring to go beyond Monte Carlo techniques by choosing carefully chosen and representative scenarios instead of random ones. Several excellent texts now exist.
Key to this progress has been the combination of new definitions with strong rigorous results that underpin the concepts. The flow is still very active, and new tools, particularly the signature of a path, and the expected signature have a strong mathematical basis (eg. Annals of Math, Jan 2010) and potential as tools in pure and applied mathematics.
This proposal would allow the PI to create the momentum for completely new applications.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences neurobiology
- natural sciences mathematics pure mathematics mathematical analysis differential equations partial differential equations
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2011-ADG_20110209
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
OX1 2JD Oxford
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.