Objective
The goal of this project is to develop kernel-based machine learning methods for image classification that employ similarity measures comparing images in a hierarchical fashion - as humans do, but with the accuracy of a computer. These methods shall allow to solve challenging medical imaging problems, in particular they will be applied to the diagnosis of osteoarthritis (OA) and breast cancer, which are ranked among the most burdening diseases.
Looking at the visual cortex, it becomes obvious that the human visual system uses `deep' structure consisting of multiple levels of processing operating on more and more abstract representations of the visual scene. This has been successfully copied in computer vision systems, In contrast, kernel-based learning algorithms such as support vector machine (SVM) classifiers mark the state-of-the art in pattern recognition. They employ (Mercer) kernel functions to implicitly define a metric feature space for processing the input data, that is, the kernel defines the similarity between observations, in our case between medical images. Kernel methods are well understood theoretically and give excellent results in practice. However, they are usually considered to be `shallow' learning methods in the sense that they realize only a single layer of non-linear processing. This project will combine hierarchical image processing with the efficiency, theoretical beauty, and accuracy gain of SVMs for advancing the performance of medical imaging systems. This is made possible by marrying the applicants expertise in kernel-based machine learning with the widely recognized knowledge in medical image analysis at his new affiliation The Image Group at the Department of Computer Science, University of Copenhagen (DIKU).
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences artificial intelligence computer vision image recognition
- medical and health sciences clinical medicine oncology breast cancer
- natural sciences computer and information sciences artificial intelligence pattern recognition
- engineering and technology medical engineering diagnostic imaging
- natural sciences computer and information sciences artificial intelligence machine learning
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-2011-CIG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MC-CIG - Support for training and career development of researcher (CIG)
Coordinator
1165 KOBENHAVN
Denmark
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.