Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-06-18

Advanced Kernel-Methods for Medical Imaging

Cel

The goal of this project is to develop kernel-based machine learning methods for image classification that employ similarity measures comparing images in a hierarchical fashion - as humans do, but with the accuracy of a computer. These methods shall allow to solve challenging medical imaging problems, in particular they will be applied to the diagnosis of osteoarthritis (OA) and breast cancer, which are ranked among the most burdening diseases.

Looking at the visual cortex, it becomes obvious that the human visual system uses `deep' structure consisting of multiple levels of processing operating on more and more abstract representations of the visual scene. This has been successfully copied in computer vision systems, In contrast, kernel-based learning algorithms such as support vector machine (SVM) classifiers mark the state-of-the art in pattern recognition. They employ (Mercer) kernel functions to implicitly define a metric feature space for processing the input data, that is, the kernel defines the similarity between observations, in our case between medical images. Kernel methods are well understood theoretically and give excellent results in practice. However, they are usually considered to be `shallow' learning methods in the sense that they realize only a single layer of non-linear processing. This project will combine hierarchical image processing with the efficiency, theoretical beauty, and accuracy gain of SVMs for advancing the performance of medical imaging systems. This is made possible by marrying the applicants expertise in kernel-based machine learning with the widely recognized knowledge in medical image analysis at his new affiliation The Image Group at the Department of Computer Science, University of Copenhagen (DIKU).

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

FP7-PEOPLE-2011-CIG
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

MC-CIG - Support for training and career development of researcher (CIG)

Koordynator

KOBENHAVNS UNIVERSITET
Wkład UE
€ 100 000,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych
Moja broszura 0 0