Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-06-18

STRUCTURE PRESERVING APPROXIMATIONS FOR ROBUST COMPUTATION OF CONSERVATION LAWS AND RELATED EQUATIONS

Obiettivo

"Many interesting systems in physics and engineering are mathematically modeled by first-order non-linear hyperbolic partial differential equations termed as systems of conservation laws. Examples include the Euler equations of aerodynamics, the shallow water equations of oceanography, multi-phase flows in a porous medium (used in the oil industry), equations of non-linear elasticity and the MHD equations of plasma physics. Numerical methods are the key tools to study these equations and to simulate interesting phenomena such as shock waves.

Despite the intense development of numerical methods for the past three decades and great success in applying these methods to large scale complex physical and engineering simulations, the massive increase in computational power in recent years has exposed the inability of state of the art schemes to simulate very large, multiscale, multiphysics three dimensional problems on complex geometries. In particular, problems with strong shocks that depend explicitly on underlying small scale effects, involve geometric constraints like vorticity and require uncertain inputs such as random initial data and source terms, are beyond the range of existing methods.

The main goal of this project will be to design space-time adaptive \emph{structure preserving} arbitrarily high-order finite volume and discontinuous Galerkin schemes that incorporate correct small scale information and provide for efficient uncertainty quantification. These schemes will tackle emerging grand challenges and dramatically increase the range and scope of numerical simulations for systems modeled by hyperbolic PDEs. Moreover, the schemes will be implemented to ensure optimal performance on emerging massively parallel hardware architecture. The resulting publicly available code can be used by scientists and engineers to study complex systems and design new technologies."

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

ERC-2012-StG_20111012
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-SG - ERC Starting Grant

Istituzione ospitante

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Contributo UE
€ 1 220 433,00
Indirizzo
Raemistrasse 101
8092 Zuerich
Svizzera

Mostra sulla mappa

Regione
Schweiz/Suisse/Svizzera Zürich Zürich
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Beneficiari (1)

Il mio fascicolo 0 0