Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Machine learning for computational science:<br/>statistical and formal modelling of biological systems

Objectif

Computational modelling is changing the face of science. Many complex systems can be understood as embodied computational systems performing distributed computations on a massive scale. Biology is the discipline where these ideas find their most natural application: cells can be viewed as input/ output devices, with proteins and organelles behaving as finite state machines performing distributed computations inside the cell. This led to the influential framework of cell as computation, and the successful deployment of formal verification and analysis on models of biological systems.

This paradigm shift in our understanding of biology has been possible due to the increasingly quantitative experimental techniques being developed in experimental biology. Formal modelling techniques, however, do not have mechanisms to directly include the information obtained from experimental observations in a statistically consistent way. This difficulty in relating the experimental and theoretical developments in biology is a central problem: without incorporating observations, it is extremely difficult to obtain reliable parametrisations of models. More importantly, it is impossible to assess the confidence of model predictions. This means that the central scientific task of falsifying hypotheses cannot be performed in a statistically meaningful way, and that it is very difficult to employ model predictions to rationally plan novel experiments.

In this project we will build and develop machine learning tools for continuous time stochastic processes to obtain a principled treatment of the uncertainty at every step of the modelling pipeline. We will use and extend probabilistic programming languages to fully automate the inference tasks, and link to advanced modelling languages to allow formal analysis tools to be deployed in a data modelling framework. We will pursue twoapplications to fundamental problems in systems biology, guaranteeing impact on exciting scientific questions.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

ERC-2012-StG_20111012
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-SG - ERC Starting Grant

Institution d’accueil

THE UNIVERSITY OF EDINBURGH
Contribution de l’UE
€ 1 421 944,00
Adresse
OLD COLLEGE, SOUTH BRIDGE
EH8 9YL Edinburgh
Royaume-Uni

Voir sur la carte

Région
Scotland Eastern Scotland Edinburgh
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Bénéficiaires (1)

Mon livret 0 0