European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Quantum simulation of two-dimensional fermionic systems

Objectif

Two-dimensional fermionic systems show remarkable physical properties, not only of interest for fundamental science but also directed towards technological application. Two paradigmatic examples are layered high-Tc superconductors and graphene. However, despite of decades of investigations, their theoretical comprehension is far from being complete.
In QuFerm2D, I propose to use atomic Fermi gases to study the physics of two-dimensional strongly correlated fermions. Indeed, ultracold atoms are “ideal” quantum simulators of many-body phenomena thanks to the unprecedented possibility of controlling most of the relevant parameters. I want to set up a new machine that will benefit of the recent advances in ultracold atomic system, such as single-site addressability and the full control of the interparticle interactions. Tailoring arbitrary optical potentials will create the perfect environment for implementing quantum models.
I want to characterize both the normal and the superfluid phases of layered fermions. At high temperatures I will measure the equation of state to check the validity of the Fermi liquid description, pointing out also the role of fluctuations. In the superfluid regime, I will study the interlayer tunneling, discriminating the coherent Josephson dynamics from the single-particle hopping, and determining the superfluid energy gap. By adding disorder I want to simulate the physics of granular superconductors, testing the robustness of the order parameter and the onset of metallic phases at higher temperatures. The comprehension of these topics will be the natural background to implement the many-body Fermi-Hubbard Hamiltonians in square and honeycomb lattices that are expected to unveil the microscopic mechanisms of high-Tc superconductors and of graphene in presence of strong interactions.
I believe that the successful realization of this project will shed new light on the exciting and interdisciplinary field of strongly correlated fermions.

Appel à propositions

ERC-2012-StG_20111012
Voir d’autres projets de cet appel

Régime de financement

ERC-SG - ERC Starting Grant

Institution d’accueil

CONSIGLIO NAZIONALE DELLE RICERCHE
Contribution de l’UE
€ 1 243 200,00
Adresse
PIAZZALE ALDO MORO 7
00185 Roma
Italie

Voir sur la carte

Région
Centro (IT) Lazio Roma
Type d’activité
Research Organisations
Contact administratif
Donata Fornaciari (Dr.)
Chercheur principal
Giacomo Roati (Dr.)
Liens
Coût total
Aucune donnée

Bénéficiaires (1)