Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-06-18

Stability and wall-crossing in algebraic and differential geometry

Ziel

"This proposal centers on the special interaction of algebraic and differential geometry which arises from the notion of stability, going back to the celebrated correspondence between polystable vector bundles and Hermite-Einstein connections.

A conjecture of Yau, Tian and Donaldson seeks to extend this correspondence to projective manifolds, formulating an algebro-geometric notion of stability (K-polystability) which should be equivalent to the existence of a (unique) Kaehler metric of constant scalar curvature in the first Chern class of an ample line bundle. The necessity of stability is now settled, thanks to the work of Donaldson, myself (Adv. in Math. 2009) and Mabuchi. The existence implication however seems to be out of reach with current techniques. In this project I will motivate the need to go beyond the notion of K-stability, and select some crucial open problems which arise naturally in this context, especially in connection with Donaldson's program for Fano manifolds and his conjecture that a Fano manifold with a Kaehler-Einstein metric is ``birationally stable"". Another surprising application of algebro-geometric stability to differential geometry has recently emerged in the physical work of Gaiotto, Moore and Neitzke. They showed (conjecturally) how to use the stability and wall-crossing of ``BPS states'' to reconstruct the Hitchin hyperkaehler metric on a class of moduli spaces of Higgs bundles. In this project I propose to study some exciting mathematical questions which arise from this theory.

This project aims at attacking some central problems which stem from the connection between stability and special metrics, and will be carried out by myself as P.I. and Gabor Szekelyhidi as a Team Member, over a period of four years. We will be supported by two Post-Docs (each position lasting two years) and a graduate student (three years)."

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

ERC-2012-StG_20111012
Andere Projekte für diesen Aufruf anzeigen

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-SG - ERC Starting Grant

Gastgebende Einrichtung

SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI DI TRIESTE
EU-Beitrag
€ 124 408,70
Adresse
VIA BONOMEA 265
34136 Trieste
Italien

Auf der Karte ansehen

Region
Nord-Est Friuli-Venezia Giulia Trieste
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten

Begünstigte (2)

Mein Booklet 0 0