Obiettivo
Algorithms represent all the computational techniques and mechanisms used in computer science. Efficient algorithms are crucial for the effective performance of any information processing system. ALCOM aims to establish a network of researchers cooperating in the field of algorithm design and analysis, and to carry out research in several key areas of computational complexity theory. The goal of the Action was to strengthen and advance fundamental research in the design of analysis of computer algorithmsin the European Community.
The primary goal of ALCOM was to obtain good algorithms and data structures for practical use, and to assess their complexity by discrete mathematical or analytic techniques. The secondary goal was to understand the inherent complexity of problems and methods so that questions of optimality (or near-optimality) can be considered.
A network of researchers cooperating in the field of algorithm design and analysis has been establihed. Coordinated research took place in the following areas:
data structures (new techniques for maintaining sets of geometric objects for efficient query answering, algorithms for computing obstacle free shortest paths, advances in persistent datastructures, on line algorithms for maintaining components in dynamic graphs, and a new release of the algorithms library LEDA);
computational geometry (new algorithms for computing Voronoi diagrams and Delaunay triangulations, output sensitive algorithms for hidden surface removal for polytopes, advances in scene analysis, and randomized incremental constructions);
graph algorithms (advances in graph layout and graph drawing problems, efficient on line algorithms for finding shortest paths in planar graphs, advances in the analysis of on line algorithms for hypergraphs, and new algorithms for deciding k-connectivity);
probabilistic methods average case analysis (performance of unification algorithms and of search problems on tree structured data, analysis of algorithms for random graphs, probabilistic analysis of a geometric lattice reduction algorithm, and a new release of the LUO system for automatic analysis);
complexity theory (new bounds for arithmetic circuits, results for computational learning and strategy determination, complexity results for local search algorithms, advances in the study of polynominal complexity classes and the complexity of algebraic algorithms) parallel algorithms (advances in the study of P-complete and numerical control (NC) problems, processor efficient algorithms, efficient expected case parallel algorithms and algorithms for optimal gridrouting);
distributed algorithms (analysis of adaptive routing algorithms, new techniques for routing with compact tables, new algorithms for atomic registers, results for distributed datastructuring, and design methodologies for some classes of distri buted control algorithms and protocols).
APPROACH AND METHODS
Research in ALCOM focused on the development of general tools and techniques that can be employed in a wide variety of computer applications. Efficient algorithms and data structures were developed for selected problems in a number of key areas (eg computational geometry, graphs and networks, and combinatorial optimisation), and their complexity assessed by discrete mathematical, analytic and experimental techniques.
Probabilistic methods were also explored to analyse the performance of algorithms and to design algorithms with good expected runtimes. The research extends to fundamental problems in parallel computing and distributed processing, and addresses suitable models of processor or computer interconnection networks and communication protocols, with due attention to invariant-based design methods.
PROGRESS AND RESULTS - STATUS AS OF OCTOBER 1991
The basic research network has been realised. The Action's news-bulletin (Algorithms Review) will be upgraded to an international journal after the end of the Action. Results delivered in Year 2 include:
-Data structures: new techniques for maintaining sets of geometric objects for efficient query answering, algorithms for computing obstacle-free shortest paths, advances in persistent datastructures, efficient on-line algorithms for maintaining component s in dynamic graphs, and a new release of the algorithms library LEDA.
-Computational geometry: new algorithms for computing Voronoi diagrams and Delaunay triangulations, output-sensitive algorithms for hidden-surface removal for polytopes, advances in scene analysis, and randomised incremental constructions.
-Graph algorithms: advances in graph-layout and graph drawing problems, efficient on-line algorithms for finding shortest paths in planar graphs, advances in the analysis of on-line algorithms for hypergraphs, and new algorithms for deciding k-connectivi ty.
-Probabilistic methods and average-case analysis: performance of unification algorithms and of search problems on tree-structured data, analysis of (parallel) algorithms for random graphs, probabilistic analysis of a geometric lattice reduction algorithm , and a new release of the LUO system for automatic analysis.
-Complexity theory: new bounds for arithmetic circuits, results for computational learning and strategy determination, complexity results for local search algorithms, advances in the study of polynominal complexity classes and the complexity of algebraic algorithms.
-Parallel algorithms: advances in the study of P-complete and NC-problems (viz. in graph theory and optimisation), processor-efficient algorithms (eg for computational geometry), efficient expected-case parallel algorithms (eg for graph coloring, randomi sed integer sorting, and generating random permutations), and algorithms for optimal grid-routing.
-Distributed algorithms: analysis of adaptive routing algorithms, new techniques for routing with compact tables, new algorithms for atomic registers, results for distributed datastructuring, and design methodologies for some classes of distributed contr ol algorithms (eg termination detection) and protocols.
POTENTIAL
ALCOM has proved instrumental in creating a European platform for algorithms research. Ultimately this will lead to better training of designers of highly efficient computer applications. Both the LEDA program-library and the LUO automatic analyser make advanced algorithms and analysis techniques available for wider use. Many algorithms developed in the action deal with fundamental discretised problems and can ultimately be applied in complex software systems.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
- scienze naturali informatica e scienze dell'informazione software software applicativi software di sistema
- scienze naturali matematica matematica pura aritmetica
- scienze naturali matematica matematica pura geometria
- scienze naturali matematica matematica pura matematica discreta teoria dei grafi
- scienze naturali informatica e scienze dell'informazione scienza dei dati trattamento dei dati
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Dati non disponibili
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Dati non disponibili
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Dati non disponibili
Coordinatore
3584 CH UTRECHT
Paesi Bassi
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.