Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-05-28

Kähler-Einstein metrics, random point processes and variational principles

Objectif

In broad terms the aim of this proposal is to introduce a new probabilistic approach to the study of Kähler-Einstein (K-E) metrics on complex manifolds. A precise procedure, based on a blend of Statistical Mechanics, Pluripotential theory and Kähler Geometry. will be used to show that

• when a K-E metric exists on a complex manifold X it can be obtained from the “large
N limit” of certain canonical random point processes on X with N particles.

The canonical point processes are directly defined in terms of algebro-geometric data and the thrust of this approach is thus that it gives a new link between algebraic geometry on one and hand and complex differential (Kähler) geometry on the other. A major motivation for this project comes from the fundamental Yau-Tian-Donaldson conjecture in Kähler geometry, which aims at characterizing the obstructions to the existence of a K-E metric on a Fano manifold in terms of a suitable notion of algebro-geometric “stability”, notably K-Stability. In this project a new “probabilistic/statistical mechanical” version of stability will be introduced referred to as Gibbs stability, which also has an interesting purely algebro-geometric definition in the spirit of the Minimal Model Program in current algebraic geometry and another specific aim of this project is to prove or at least make substantial progress towards proving,

• There is a (unique) K-E metric on a Fano manifold X precisely when X is asymptotically Gibbs stable

The canonical random point processes will be defined as certain “beta-deformations” of determinantal point processes and share certain properties with the ones appearing in Random Matrix Theory and in the study of quantum chaos and zeroes of random polynomials (and random holomorphic sections) But a crucial new feature here is that the processes are independent of any back-ground data, such as a potential or a metric.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

ERC-2012-StG_20111012
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-SG - ERC Starting Grant

Institution d’accueil

CHALMERS TEKNISKA HOGSKOLA AB
Contribution de l’UE
€ 1 200 000,00
Adresse
-
412 96 GOTEBORG
Suède

Voir sur la carte

Région
Södra Sverige Västsverige Västra Götalands län
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Bénéficiaires (1)

Mon livret 0 0