Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-05-28

Parsing low-resource languages and domains

Ziel

There are noticeable asymmetries in availability of high-quality natural language processing (NLP). We can adequately summarize English newspapers and translate them into Korean, but we cannot translate Korean newspaper articles into English, and summarizing micro-blogs is much more difficult than summarizing newspaper articles. This is a fundamental problem for modern societies, their development and democracy, as well as perhaps the most important research problem in NLP right now.

Most NLP technologies rely on highly accurate syntactic parsing. Reliable parsing models can be induced from large collections of manually annotated data, but such collections are typically limited to sampled newswire in major languages. Highly accurate parsing is therefore not available for other languages and other domains.

The NLP community is well aware of this problem, but unsupervised techniques that do not rely on manually annotated data cannot be used for real-world applications, where highly accurate parsing is needed, and sample bias correction methods that automatically correct the bias in newswire when parsing, say, micro-blogs, do not yet lead to robust improvements across the board.

The objective of this project is to develop new learning methods for parsing natural language for which no unbiased labeled data exists. In order to do so, we need to fundamentally rethink the unsupervised parsing problem, including how we evaluate unsupervised parsers, but we also need to supplement unsupervised learning techniques with robust methods for automatically correcting sample selection biases in related data. Such methods will be applicable to both cross-domain and cross-language syntactic parsing and will pave the way toward robust and scalable NLP. The societal impact of robust and scalable NLP is unforeseeable and comparable to how efficient information retrieval techniques have revolutionized modern societies.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

ERC-2012-StG_20111124
Andere Projekte für diesen Aufruf anzeigen

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-SG - ERC Starting Grant

Gastgebende Einrichtung

KOBENHAVNS UNIVERSITET
EU-Beitrag
€ 1 126 183,20
Adresse
NORREGADE 10
1165 KOBENHAVN
Dänemark

Auf der Karte ansehen

Region
Danmark Hovedstaden Byen København
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten

Begünstigte (1)

Mein Booklet 0 0