Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-05-28

Parsing low-resource languages and domains

Cel

There are noticeable asymmetries in availability of high-quality natural language processing (NLP). We can adequately summarize English newspapers and translate them into Korean, but we cannot translate Korean newspaper articles into English, and summarizing micro-blogs is much more difficult than summarizing newspaper articles. This is a fundamental problem for modern societies, their development and democracy, as well as perhaps the most important research problem in NLP right now.

Most NLP technologies rely on highly accurate syntactic parsing. Reliable parsing models can be induced from large collections of manually annotated data, but such collections are typically limited to sampled newswire in major languages. Highly accurate parsing is therefore not available for other languages and other domains.

The NLP community is well aware of this problem, but unsupervised techniques that do not rely on manually annotated data cannot be used for real-world applications, where highly accurate parsing is needed, and sample bias correction methods that automatically correct the bias in newswire when parsing, say, micro-blogs, do not yet lead to robust improvements across the board.

The objective of this project is to develop new learning methods for parsing natural language for which no unbiased labeled data exists. In order to do so, we need to fundamentally rethink the unsupervised parsing problem, including how we evaluate unsupervised parsers, but we also need to supplement unsupervised learning techniques with robust methods for automatically correcting sample selection biases in related data. Such methods will be applicable to both cross-domain and cross-language syntactic parsing and will pave the way toward robust and scalable NLP. The societal impact of robust and scalable NLP is unforeseeable and comparable to how efficient information retrieval techniques have revolutionized modern societies.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

ERC-2012-StG_20111124
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-SG - ERC Starting Grant

Instytucja przyjmująca

KOBENHAVNS UNIVERSITET
Wkład UE
€ 1 126 183,20
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych

Beneficjenci (1)

Moja broszura 0 0