Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-05-28

Lie groups, differential equations and geometry

Objetivo

The main objective of the proposal is the creation, and development of a cooperative research network which utilizes the strengths and synergies of the knowledge of the member research groups. This new cooperation symbolizes the coercive power of two branches of mathematics, namely those of ALGEBRA and GEOMETRY, which had been unified first in the creation Decartesian coordinate geometry. 3 of 6 research groups are on the edge of algebraic research, while the others gained essential results and knowledge in geometry. With different backgrounds, new synergies and methodologies will arise and accelerate the research activities.
Besides the traditional mobility schemes and distributing ideas on conferences and publications, new methodology of continuous reaction is planned to put in practice by the usage of world wide web, creating the platform of online web workshops at regular times. This will ensure sustainability of the network for long time.

We plan to achieve new scientific results on the following topics:
• imprimitive transformation groups, affine geometries over paradual near rings;
• fundamental theorem of geometric algebra, Novikov’s conjecture and the properties of skew-symmetric and symmetric elements for general involutions in group algebras.
• multiplication loops of locally compact topological translation planes; Lie groups which are the groups topologically generated by all left and right translations of topological loops;
• the inverse problem of the calculus of variations for second order ordinary differential equations: existence of variational multipliers, in particular, of multipliers satisfying the Finsler homogeneity conditions, and Riemannian and Finsler metrizability;
• metric structures associated with Lagrangians and Finsler functions
• variational structures in Finsler geometry and applications in physics (general relativity, Feynmam integral);
• Hamiltonian structures for homogeneous Lagrangians.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: https://op.europa.eu/es/web/eu-vocabularies/euroscivoc.

Para utilizar esta función, debe iniciar sesión o registrarse

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

FP7-PEOPLE-2012-IRSES
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

MC-IRSES - International research staff exchange scheme (IRSES)

Coordinador

DEBRECENI EGYETEM
Aportación de la UE
€ 121 800,00
Dirección
EGYETEM TER 1
4032 Debrecen
Hungría

Ver en el mapa

Región
Alföld és Észak Észak-Alföld Hajdú-Bihar
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Participantes (2)

Mi folleto 0 0