Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-05-28

Lie groups, differential equations and geometry

Obiettivo

The main objective of the proposal is the creation, and development of a cooperative research network which utilizes the strengths and synergies of the knowledge of the member research groups. This new cooperation symbolizes the coercive power of two branches of mathematics, namely those of ALGEBRA and GEOMETRY, which had been unified first in the creation Decartesian coordinate geometry. 3 of 6 research groups are on the edge of algebraic research, while the others gained essential results and knowledge in geometry. With different backgrounds, new synergies and methodologies will arise and accelerate the research activities.
Besides the traditional mobility schemes and distributing ideas on conferences and publications, new methodology of continuous reaction is planned to put in practice by the usage of world wide web, creating the platform of online web workshops at regular times. This will ensure sustainability of the network for long time.

We plan to achieve new scientific results on the following topics:
• imprimitive transformation groups, affine geometries over paradual near rings;
• fundamental theorem of geometric algebra, Novikov’s conjecture and the properties of skew-symmetric and symmetric elements for general involutions in group algebras.
• multiplication loops of locally compact topological translation planes; Lie groups which are the groups topologically generated by all left and right translations of topological loops;
• the inverse problem of the calculus of variations for second order ordinary differential equations: existence of variational multipliers, in particular, of multipliers satisfying the Finsler homogeneity conditions, and Riemannian and Finsler metrizability;
• metric structures associated with Lagrangians and Finsler functions
• variational structures in Finsler geometry and applications in physics (general relativity, Feynmam integral);
• Hamiltonian structures for homogeneous Lagrangians.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/it/web/eu-vocabularies/euroscivoc.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

FP7-PEOPLE-2012-IRSES
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MC-IRSES - International research staff exchange scheme (IRSES)

Coordinatore

DEBRECENI EGYETEM
Contributo UE
€ 121 800,00
Indirizzo
EGYETEM TER 1
4032 Debrecen
Ungheria

Mostra sulla mappa

Regione
Alföld és Észak Észak-Alföld Hajdú-Bihar
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Partecipanti (2)

Il mio fascicolo 0 0