Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-05-28

Lie groups, differential equations and geometry

Cel

The main objective of the proposal is the creation, and development of a cooperative research network which utilizes the strengths and synergies of the knowledge of the member research groups. This new cooperation symbolizes the coercive power of two branches of mathematics, namely those of ALGEBRA and GEOMETRY, which had been unified first in the creation Decartesian coordinate geometry. 3 of 6 research groups are on the edge of algebraic research, while the others gained essential results and knowledge in geometry. With different backgrounds, new synergies and methodologies will arise and accelerate the research activities.
Besides the traditional mobility schemes and distributing ideas on conferences and publications, new methodology of continuous reaction is planned to put in practice by the usage of world wide web, creating the platform of online web workshops at regular times. This will ensure sustainability of the network for long time.

We plan to achieve new scientific results on the following topics:
• imprimitive transformation groups, affine geometries over paradual near rings;
• fundamental theorem of geometric algebra, Novikov’s conjecture and the properties of skew-symmetric and symmetric elements for general involutions in group algebras.
• multiplication loops of locally compact topological translation planes; Lie groups which are the groups topologically generated by all left and right translations of topological loops;
• the inverse problem of the calculus of variations for second order ordinary differential equations: existence of variational multipliers, in particular, of multipliers satisfying the Finsler homogeneity conditions, and Riemannian and Finsler metrizability;
• metric structures associated with Lagrangians and Finsler functions
• variational structures in Finsler geometry and applications in physics (general relativity, Feynmam integral);
• Hamiltonian structures for homogeneous Lagrangians.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: https://op.europa.eu/pl/web/eu-vocabularies/euroscivoc.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

FP7-PEOPLE-2012-IRSES
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

MC-IRSES - International research staff exchange scheme (IRSES)

Koordynator

DEBRECENI EGYETEM
Wkład UE
€ 121 800,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych

Uczestnicy (2)

Moja broszura 0 0