Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-05-30

Bayesian Statistics in Infinite Dimensions: Targeting<br/>Priors by Mathematical Analysis

Objectif

I propose novel methods for understanding key aspects that are essential
to the future of Bayesian inference for high- or infinite-dimensional
models and data. By combining my expertise on empirical processes and
likelihood theory with my recent work on posterior contraction I shall
foremost lay a mathematical foundation for the Bayesian solution to
uncertainty quantification in high dimensions.

Decades of doubt that Bayesian methods can work for high-dimensional
models or data have in the last decade been replaced by a belief that
these methods are actually especially appropriate in this
setting. They are thought to possess greater capacity for
incorporating prior knowledge and to be better able to combine data
from related measurements. My premise is that for high- or
infinite-dimensional models and data this belief is not well founded,
and needs to be challenged and shaped by mathematical analysis.

My central focus is the accuracy of the posterior distribution as
quantification of uncertainty. This is unclear and has hardly been
studied, notwithstanding that it is at the core of the Bayesian
method. In fact the scarce available evidence on Bayesian credible
sets in high dimensions (sets of prescribed posterior probability)
casts doubt on their ability to capture a given truth. I shall discover
how this depends strongly on the prior distribution, empirical or
hierarchical Bayesian tuning, and posterior marginalizaton, and therewith
generate guidelines for good practice.

I shall study these issues in novel statistical settings (sparsity and
large scale inference, inverse problems, state space models,
hierarchical modelling), and connect to the most recent, exciting
developments in general statistics.

I work against a background of data-analysis in genetics, genomics,
finance, and imaging, and employ stochastic process theory,
mathematical analysis and information theory.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

ERC-2012-ADG_20120216
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-AG - ERC Advanced Grant

Institution d’accueil

UNIVERSITEIT LEIDEN
Contribution de l’UE
€ 2 190 000,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Bénéficiaires (1)

Mon livret 0 0