Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-05-30

Bayesian Statistics in Infinite Dimensions: Targeting<br/>Priors by Mathematical Analysis

Cel

I propose novel methods for understanding key aspects that are essential
to the future of Bayesian inference for high- or infinite-dimensional
models and data. By combining my expertise on empirical processes and
likelihood theory with my recent work on posterior contraction I shall
foremost lay a mathematical foundation for the Bayesian solution to
uncertainty quantification in high dimensions.

Decades of doubt that Bayesian methods can work for high-dimensional
models or data have in the last decade been replaced by a belief that
these methods are actually especially appropriate in this
setting. They are thought to possess greater capacity for
incorporating prior knowledge and to be better able to combine data
from related measurements. My premise is that for high- or
infinite-dimensional models and data this belief is not well founded,
and needs to be challenged and shaped by mathematical analysis.

My central focus is the accuracy of the posterior distribution as
quantification of uncertainty. This is unclear and has hardly been
studied, notwithstanding that it is at the core of the Bayesian
method. In fact the scarce available evidence on Bayesian credible
sets in high dimensions (sets of prescribed posterior probability)
casts doubt on their ability to capture a given truth. I shall discover
how this depends strongly on the prior distribution, empirical or
hierarchical Bayesian tuning, and posterior marginalizaton, and therewith
generate guidelines for good practice.

I shall study these issues in novel statistical settings (sparsity and
large scale inference, inverse problems, state space models,
hierarchical modelling), and connect to the most recent, exciting
developments in general statistics.

I work against a background of data-analysis in genetics, genomics,
finance, and imaging, and employ stochastic process theory,
mathematical analysis and information theory.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

ERC-2012-ADG_20120216
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-AG - ERC Advanced Grant

Instytucja przyjmująca

UNIVERSITEIT LEIDEN
Wkład UE
€ 2 190 000,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych

Beneficjenci (1)

Moja broszura 0 0