Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-06-18

Challenges in Extraction and Separation of Sources

Objetivo

Separation/extraction of sources are wide concepts in information sciences, since sensors provide information mixing and an essential step consists in separating or extracting useful information from unuseful one, called noise. In this project, we consider three challenges.

The first one is the multimodality. Indeed, with the multiplication of kinds of sensors, in many areas like biomedical signal processing, hyperspectral imaging, etc. there are many ways for recording the same physical phenomenon leading thus to multimodal data. Multimodality has been studied in the framework of human-computer interface or in data fusion, but never at the signal level. The objective is to provide a general framework for modeling classical multimodal properties, like complementarity, redundancy, equivalence, etc. as of function of source signals.

The second challenge is nonlinearity. Indeed, there exist a few cases where the mixtures are essentially nonlinear, e.g. with chemical sensors. The main objective is to enlarge results on identifiability conditions for new classes of nonlinearities and priors on sources.

The third challenge is the data size. For high-dimension data (e.g. EEG or MRI in brain imaging), separating all the sources is neither tractable nor relevant, since one would like to only extract the useful sources. Conversely, for a small number of sensors, especially smaller than the number of sources, it is again necessary to only focus on the useful signals. The main objective is to develop generic approaches able to only extract useful signals, based on simple reference signal, modeling weak properties of the useful signal.

Finally, validation and relevant modeling must be based on actual signals and problems. In this project, theoretical results and algorithms will be developed in interaction with applications in biomedical engineering (brain-computer interface, EEG, fMRI), chemical engineering, audio-visual scene analysis and hyperspectral imaging.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

ERC-2012-ADG_20120216
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

ERC-AG - ERC Advanced Grant

Institución de acogida

UNIVERSITE GRENOBLE ALPES
Aportación de la UE
€ 2 499 390,00
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Beneficiarios (2)

Mi folleto 0 0