Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Challenges in Extraction and Separation of Sources

Objectif

Separation/extraction of sources are wide concepts in information sciences, since sensors provide information mixing and an essential step consists in separating or extracting useful information from unuseful one, called noise. In this project, we consider three challenges.

The first one is the multimodality. Indeed, with the multiplication of kinds of sensors, in many areas like biomedical signal processing, hyperspectral imaging, etc. there are many ways for recording the same physical phenomenon leading thus to multimodal data. Multimodality has been studied in the framework of human-computer interface or in data fusion, but never at the signal level. The objective is to provide a general framework for modeling classical multimodal properties, like complementarity, redundancy, equivalence, etc. as of function of source signals.

The second challenge is nonlinearity. Indeed, there exist a few cases where the mixtures are essentially nonlinear, e.g. with chemical sensors. The main objective is to enlarge results on identifiability conditions for new classes of nonlinearities and priors on sources.

The third challenge is the data size. For high-dimension data (e.g. EEG or MRI in brain imaging), separating all the sources is neither tractable nor relevant, since one would like to only extract the useful sources. Conversely, for a small number of sensors, especially smaller than the number of sources, it is again necessary to only focus on the useful signals. The main objective is to develop generic approaches able to only extract useful signals, based on simple reference signal, modeling weak properties of the useful signal.

Finally, validation and relevant modeling must be based on actual signals and problems. In this project, theoretical results and algorithms will be developed in interaction with applications in biomedical engineering (brain-computer interface, EEG, fMRI), chemical engineering, audio-visual scene analysis and hyperspectral imaging.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

ERC-2012-ADG_20120216
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-AG - ERC Advanced Grant

Institution d’accueil

UNIVERSITE GRENOBLE ALPES
Contribution de l’UE
€ 2 499 390,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Bénéficiaires (2)

Mon livret 0 0