Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-06-18

Challenges in Extraction and Separation of Sources

Ziel

Separation/extraction of sources are wide concepts in information sciences, since sensors provide information mixing and an essential step consists in separating or extracting useful information from unuseful one, called noise. In this project, we consider three challenges.

The first one is the multimodality. Indeed, with the multiplication of kinds of sensors, in many areas like biomedical signal processing, hyperspectral imaging, etc. there are many ways for recording the same physical phenomenon leading thus to multimodal data. Multimodality has been studied in the framework of human-computer interface or in data fusion, but never at the signal level. The objective is to provide a general framework for modeling classical multimodal properties, like complementarity, redundancy, equivalence, etc. as of function of source signals.

The second challenge is nonlinearity. Indeed, there exist a few cases where the mixtures are essentially nonlinear, e.g. with chemical sensors. The main objective is to enlarge results on identifiability conditions for new classes of nonlinearities and priors on sources.

The third challenge is the data size. For high-dimension data (e.g. EEG or MRI in brain imaging), separating all the sources is neither tractable nor relevant, since one would like to only extract the useful sources. Conversely, for a small number of sensors, especially smaller than the number of sources, it is again necessary to only focus on the useful signals. The main objective is to develop generic approaches able to only extract useful signals, based on simple reference signal, modeling weak properties of the useful signal.

Finally, validation and relevant modeling must be based on actual signals and problems. In this project, theoretical results and algorithms will be developed in interaction with applications in biomedical engineering (brain-computer interface, EEG, fMRI), chemical engineering, audio-visual scene analysis and hyperspectral imaging.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

ERC-2012-ADG_20120216
Andere Projekte für diesen Aufruf anzeigen

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-AG - ERC Advanced Grant

Gastgebende Einrichtung

UNIVERSITE GRENOBLE ALPES
EU-Beitrag
€ 2 499 390,00
Adresse

Marne-la-Vall�

Auf der Karte ansehen

Region
Occitanie Midi-Pyrénées Haute-Garonne
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten

Begünstigte (2)

Mein Booklet 0 0