Ziel
Regularity and irregularity plays a central role in mathematics. In the present research proposal we will select problems from combinatorics and number theory (including additive combinatorics), where regularity and irregularity appear. In some cases we have to deal, e.g. with arbitrary finite or infinite subsets of natural numbers, where the only information we have is their cardinality, namely, that they are of positive (lower asymptotic) density within the set of all natural numbers or within the interval [1,N] for a large N. In other cases we consider an arbitrary distribution of n points within the unit square, where all we know is the density of our point set. The goal is often to show that certain configurations appear within the arbitrary set of numbers or points. These configurations definitely appear in a random set of numbers or points, but we have to show this for an arbitrary set of numbers or points with certain general properties. In order to reach our goal one can use two well-known methods. The first one is deterministic, often some kind of greedy algorithm. The second is the probabilistic method of Erdős, which shows that almost all arrangements of the given points or numbers (or graphs) fulfill the wanted property. A third method, the so called pseudorandom method, was initiated by the PI (together with M. Ajtai and J. Komlós), uses a combination of these. In other cases we have a deterministic set of numbers with certain quasi-random properties, for example, the primes. Randomness was the key idea in the recent breakthrough of Green and Tao, in proving that primes contain arbitrarily long arithmetic progressions. We will deal with 6 groups of problems: (i) finite or infinite sequences of integers, (ii) difference sets and Fourier analysis, (iii) graph and hypergraph embedding theorems, (iv) Ramsey theory, (v) distribution of points in the plane and in the unit square, (vi) regularities and irregularities in the distribution of primes.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
- Naturwissenschaften Mathematik reine Mathematik mathematische Analyse Fourier-Analyse
- Naturwissenschaften Mathematik reine Mathematik Arithmetik
- Naturwissenschaften Mathematik reine Mathematik diskrete Mathematik Graphentheorie
- Naturwissenschaften Mathematik reine Mathematik diskrete Mathematik Kombinatorik
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
ERC-2012-ADG_20120216
Andere Projekte für diesen Aufruf anzeigen
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Gastgebende Einrichtung
1053 BUDAPEST
Ungarn
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.