Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-05-28

Mathematical Methods for Robust Financial Risk Management

Objetivo

Reliable techniques in finance should take into account the unavoidable modelling error. This is the main focus of this project that we intend to address from two viewpoints raising new questions in applied mathematics.
Our first research direction is to device robust risk management methods which use the market observations and the no-arbitrage principle. A classical result in financial mathematics essentially states that, in idealized frictionless financial markets, the price processes of tradable securities must be a martingale under some equivalent probability measure. We propose to adopt a conservative viewpoint by deriving the bounds over all possible choices of martingales. By accounting for the rich information corresponding to the prices of European call options, we arrive naturally to a new optimal transportation problem. We intend to analyze several questions: clarify the connection with the Skorohod embedding problem, understand better the duality, develop the corresponding numerical techniques, explore the robust portfolio optimization problems under such constraints, and understand their impact on the risk measurement.
The second direction of research proposed in this project concerns the recent theory of Mean Field Games, recently introduced by Lasry and Lions. Our intention is to address this theory from the probabilistic point of view. The main observation is that the MFG equations, consisting of a coupled system of a Fokker-Planck equation and a semilinear Hamilton-Jacobi-Bellman equation, can be viewed as an extension of the theory of forward-backward stochastic differential equations (FBSDE) with mean-field dependence. This theory provides a simple modelling of the interactions which may be used to explain important phenomena on financial markets as the contagion effect and the systemic risk. In particular, the connection with FBSDEs opens the door to probabilistic numerical methods.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: https://op.europa.eu/es/web/eu-vocabularies/euroscivoc.

Para utilizar esta función, debe iniciar sesión o registrarse

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

ERC-2012-ADG_20120216
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

ERC-AG - ERC Advanced Grant

Institución de acogida

ECOLE POLYTECHNIQUE
Aportación de la UE
€ 1 871 400,00
Dirección
ROUTE DE SACLAY
91128 Palaiseau Cedex
Francia

Ver en el mapa

Región
Ile-de-France Ile-de-France Essonne
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Beneficiarios (1)

Mi folleto 0 0