Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-05-28

Mathematical Methods for Robust Financial Risk Management

Ziel

Reliable techniques in finance should take into account the unavoidable modelling error. This is the main focus of this project that we intend to address from two viewpoints raising new questions in applied mathematics.
Our first research direction is to device robust risk management methods which use the market observations and the no-arbitrage principle. A classical result in financial mathematics essentially states that, in idealized frictionless financial markets, the price processes of tradable securities must be a martingale under some equivalent probability measure. We propose to adopt a conservative viewpoint by deriving the bounds over all possible choices of martingales. By accounting for the rich information corresponding to the prices of European call options, we arrive naturally to a new optimal transportation problem. We intend to analyze several questions: clarify the connection with the Skorohod embedding problem, understand better the duality, develop the corresponding numerical techniques, explore the robust portfolio optimization problems under such constraints, and understand their impact on the risk measurement.
The second direction of research proposed in this project concerns the recent theory of Mean Field Games, recently introduced by Lasry and Lions. Our intention is to address this theory from the probabilistic point of view. The main observation is that the MFG equations, consisting of a coupled system of a Fokker-Planck equation and a semilinear Hamilton-Jacobi-Bellman equation, can be viewed as an extension of the theory of forward-backward stochastic differential equations (FBSDE) with mean-field dependence. This theory provides a simple modelling of the interactions which may be used to explain important phenomena on financial markets as the contagion effect and the systemic risk. In particular, the connection with FBSDEs opens the door to probabilistic numerical methods.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: https://op.europa.eu/de/web/eu-vocabularies/euroscivoc.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

ERC-2012-ADG_20120216
Andere Projekte für diesen Aufruf anzeigen

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-AG - ERC Advanced Grant

Gastgebende Einrichtung

ECOLE POLYTECHNIQUE
EU-Beitrag
€ 1 871 400,00
Adresse
ROUTE DE SACLAY
91128 Palaiseau Cedex
Frankreich

Auf der Karte ansehen

Region
Ile-de-France Ile-de-France Essonne
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten

Begünstigte (1)

Mein Booklet 0 0