Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Structural and biophysical characterization of the human mTOR kinase and its signaling complexes

Objective

Cell growth and proliferation are fundamental processes whereby organisms accumulate mass and are therefore tightly regulated. Regulation is achieved by a complex network of signaling pathways responding to various environmental cues. A crucial nutrient and energy-sensitive pathway is centered on the Serine/Threonine kinase mechanistic target of rapamycin (mTOR). In the cell, mTOR interacts with several proteins to form two multi-subunit signaling complexes: mTORC1 and mTORC2. mTORC1 responds to the intracellular energy state reflected in amino acid and oxygen levels and integrates extracellular signals from growth factors to control cell size and proliferation. mTORC2 responds to growth factors and its downstream targets regulate cell survival and cytoskeletal organization. Consequently, deregulation of mTOR signaling is directly linked to human disorders like obesity, type II diabetes or cancer, which makes mTOR a highly relevant pharmaceutical target.
Although several aspects of mTOR signaling have been understood, the lack of intermediate to high-resolution structures impairs detailed understanding of complex assembly, function and regulation. We therefore propose to determine the structures of human mTOR complexes and their subunits by X-ray crystallography. The intended research involves initial medium-throughput expression screening of mTORC1/2 subunits in bacterial and insect cells followed by a biophysical characterization of the expressed proteins. Guided by the biophysical analysis, we will establish in vitro reconstitution protocols and identify promising candidate complexes for high-throughput crystallization screening, crystal optimization and structure determination. The structures should provide first insights into the organization of human mTOR (sub)complexes and their subunits. The proposed research will be of high general impact in academic and pharmaceutical research and will therefore significantly strengthen European scientific excellence.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2012-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

UNIVERSITAT BASEL
EU contribution
€ 184 709,40
Address
PETERSPLATZ 1
4051 Basel
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Nordwestschweiz Basel-Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0