Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-06-18

From geodesic rays in spaces of Kähler metrics to the Hele-Shaw flow

Objetivo

Very recently Dr. Julius Ross at the Univ. of Cambridge and I found a striking connection between geodesic rays in spaces of Kähler metrics and the Hele-Shaw flow (Laplacian growth). By this connection both have a similar interpretation as certain families of embedded holomorphic curves attached along their boundaries to a Lagrangian submanifold.

The first objective is to develop the regularity theory of the Hele-Shaw flow (Laplacian growth) using techniques from the theory of moduli spaces of embedded holomorphic curves. These are powerful techniques used with great success in e.g. Gromov-Witten Theory and various Floer theories in symplectic topology. I thus hope to extend the short-time regularity result of Kufarev and Vinogradov, and also gain new insights as to how and when singularities occur.

The second objective is to develop the regularity theory for (weak) geodesic rays in spaces of (cohomologically equivalent) Kähler metrics, using the Hele-Shaw flow as a one (complex) dimensional model case. Donaldson, and later Chen and Tian, have successfully applied techniques from the theory of moduli spaces of embedded holomorphic curves to a related problem connected to the regularity of geodesic segments rather than rays. Dr. Ross and I have a preliminary method to adapt some of these techniques to the setting of geodesic rays.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

FP7-PEOPLE-2012-IEF
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

MC-IEF - Intra-European Fellowships (IEF)

Coordinador

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Aportación de la UE
€ 231 283,20
Dirección
TRINITY LANE THE OLD SCHOOLS
CB2 1TN CAMBRIDGE
Reino Unido

Ver en el mapa

Región
East of England East Anglia Cambridgeshire CC
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos
Mi folleto 0 0