Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

From geodesic rays in spaces of Kähler metrics to the Hele-Shaw flow

Objectif

Very recently Dr. Julius Ross at the Univ. of Cambridge and I found a striking connection between geodesic rays in spaces of Kähler metrics and the Hele-Shaw flow (Laplacian growth). By this connection both have a similar interpretation as certain families of embedded holomorphic curves attached along their boundaries to a Lagrangian submanifold.

The first objective is to develop the regularity theory of the Hele-Shaw flow (Laplacian growth) using techniques from the theory of moduli spaces of embedded holomorphic curves. These are powerful techniques used with great success in e.g. Gromov-Witten Theory and various Floer theories in symplectic topology. I thus hope to extend the short-time regularity result of Kufarev and Vinogradov, and also gain new insights as to how and when singularities occur.

The second objective is to develop the regularity theory for (weak) geodesic rays in spaces of (cohomologically equivalent) Kähler metrics, using the Hele-Shaw flow as a one (complex) dimensional model case. Donaldson, and later Chen and Tian, have successfully applied techniques from the theory of moduli spaces of embedded holomorphic curves to a related problem connected to the regularity of geodesic segments rather than rays. Dr. Ross and I have a preliminary method to adapt some of these techniques to the setting of geodesic rays.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

FP7-PEOPLE-2012-IEF
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MC-IEF - Intra-European Fellowships (IEF)

Coordinateur

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Contribution de l’UE
€ 231 283,20
Adresse
TRINITY LANE THE OLD SCHOOLS
CB2 1TN CAMBRIDGE
Royaume-Uni

Voir sur la carte

Région
East of England East Anglia Cambridgeshire CC
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée
Mon livret 0 0