Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-05-28

Exterior Differential Systems of Riemannian Geometry

Objectif

"The importance of ""gwistor space"" is being recognized today. The Researcher R. Albuquerque has discovered a natural G2 structure existing on the unit tangent sphere bundle of any given oriented Riemannian 4-manifold M. It was a major breakthrough in the theory of G2 manifolds and special structures.

That discovery has been appreciated by many great mathematicians. Firstly referred to as the ""G2 sphere of a 4-manifold"", the Researcher decided to call the bundle's total space the ""gwistor space"" of M. Also due to relations with genuine twistor theory.

Considering G2 geometry in general, it is known to be of great importance for its applications to String theory - but not only. There are few known examples satisfying several important equations of holonomy of metric-connections. On the other hand, mathematicians know that the geometry induced by the largest normed unit division algebra, the octonians, must comprise much more structure than it is understood today. E.g. the theory of associative calibrations, of special Riemannian submanifolds or relations with a proper gauge theory of G2-instantons are just in their beginning. Many aspects must be developed and that's where our project with gwistor space will give new answers.

Gwistor space is cocalibrated (the structure 3-form is coclosed) if and only if the base 4-manifold M is Einstein. This is undoubtedly a strong result in special Riemannian geometries. Giving new insight, on its own, to the long-sought theory of Einstein 4-manifolds.

Now, with this FP7 Project, the Researcher wishes to study a difficult problem, which arose from gwistors but is far more outstanding. Hidden aside of that structure was an exterior differential system (EDS) of Riemnanian manifolds in any dimension, the Griffiths system, and their Euler-Lagrange equations.

Many beautiful features of such EDS are now on a pre-published article. We may say it is of fundamental nature and importance for the great field which Riemannian geometry is."

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

FP7-PEOPLE-2012-IEF
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MC-IEF - Intra-European Fellowships (IEF)

Coordinateur

UNIVERSITA DEGLI STUDI DI TORINO
Contribution de l’UE
€ 249 242,80
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée
Mon livret 0 0