Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-05-28

Exterior Differential Systems of Riemannian Geometry

Obiettivo

"The importance of ""gwistor space"" is being recognized today. The Researcher R. Albuquerque has discovered a natural G2 structure existing on the unit tangent sphere bundle of any given oriented Riemannian 4-manifold M. It was a major breakthrough in the theory of G2 manifolds and special structures.

That discovery has been appreciated by many great mathematicians. Firstly referred to as the ""G2 sphere of a 4-manifold"", the Researcher decided to call the bundle's total space the ""gwistor space"" of M. Also due to relations with genuine twistor theory.

Considering G2 geometry in general, it is known to be of great importance for its applications to String theory - but not only. There are few known examples satisfying several important equations of holonomy of metric-connections. On the other hand, mathematicians know that the geometry induced by the largest normed unit division algebra, the octonians, must comprise much more structure than it is understood today. E.g. the theory of associative calibrations, of special Riemannian submanifolds or relations with a proper gauge theory of G2-instantons are just in their beginning. Many aspects must be developed and that's where our project with gwistor space will give new answers.

Gwistor space is cocalibrated (the structure 3-form is coclosed) if and only if the base 4-manifold M is Einstein. This is undoubtedly a strong result in special Riemannian geometries. Giving new insight, on its own, to the long-sought theory of Einstein 4-manifolds.

Now, with this FP7 Project, the Researcher wishes to study a difficult problem, which arose from gwistors but is far more outstanding. Hidden aside of that structure was an exterior differential system (EDS) of Riemnanian manifolds in any dimension, the Griffiths system, and their Euler-Lagrange equations.

Many beautiful features of such EDS are now on a pre-published article. We may say it is of fundamental nature and importance for the great field which Riemannian geometry is."

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

FP7-PEOPLE-2012-IEF
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MC-IEF - Intra-European Fellowships (IEF)

Coordinatore

UNIVERSITA DEGLI STUDI DI TORINO
Contributo UE
€ 249 242,80
Indirizzo
VIA GIUSEPPE VERDI 8
10124 TORINO
Italia

Mostra sulla mappa

Regione
Nord-Ovest Piemonte Torino
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato
Il mio fascicolo 0 0