Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-05-28

Exterior Differential Systems of Riemannian Geometry

Cel

"The importance of ""gwistor space"" is being recognized today. The Researcher R. Albuquerque has discovered a natural G2 structure existing on the unit tangent sphere bundle of any given oriented Riemannian 4-manifold M. It was a major breakthrough in the theory of G2 manifolds and special structures.

That discovery has been appreciated by many great mathematicians. Firstly referred to as the ""G2 sphere of a 4-manifold"", the Researcher decided to call the bundle's total space the ""gwistor space"" of M. Also due to relations with genuine twistor theory.

Considering G2 geometry in general, it is known to be of great importance for its applications to String theory - but not only. There are few known examples satisfying several important equations of holonomy of metric-connections. On the other hand, mathematicians know that the geometry induced by the largest normed unit division algebra, the octonians, must comprise much more structure than it is understood today. E.g. the theory of associative calibrations, of special Riemannian submanifolds or relations with a proper gauge theory of G2-instantons are just in their beginning. Many aspects must be developed and that's where our project with gwistor space will give new answers.

Gwistor space is cocalibrated (the structure 3-form is coclosed) if and only if the base 4-manifold M is Einstein. This is undoubtedly a strong result in special Riemannian geometries. Giving new insight, on its own, to the long-sought theory of Einstein 4-manifolds.

Now, with this FP7 Project, the Researcher wishes to study a difficult problem, which arose from gwistors but is far more outstanding. Hidden aside of that structure was an exterior differential system (EDS) of Riemnanian manifolds in any dimension, the Griffiths system, and their Euler-Lagrange equations.

Many beautiful features of such EDS are now on a pre-published article. We may say it is of fundamental nature and importance for the great field which Riemannian geometry is."

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

FP7-PEOPLE-2012-IEF
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

MC-IEF - Intra-European Fellowships (IEF)

Koordynator

UNIVERSITA DEGLI STUDI DI TORINO
Wkład UE
€ 249 242,80
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych
Moja broszura 0 0