Ziel
Inference in medical imaging is an important step for disease diagnosis, tissue segmentation, alignment with an anatomical atlas, and a wide range of other applications. However, imperfections in imaging sensors, physical limitations of imaging technologies, and variation in the human population mean that statistical methods are essential for high performance. Statistical learning makes use of human provided ground truth to enable computers to automatically make predictions on future examples without human intervention. At the heart of statistical learning methods is risk minimization - the minimization of the expected loss on a previously unseen image. Textbook methods in statistical learning are not generally designed to minimize the expected loss for loss functions appropriate to medical imaging, which may be asymmetric and non-modular. Furthermore, these methods often do not have the capacity to model interdependencies in the prediction space, such as those arising from spatial priors, and constraints arising from the volumetric layout of human anatomy. We aim to develop new statistical learning methods that have these capabilities, to develop efficient learning algorithms, to apply them to a key task in medical imaging (tumor segmentation), and to prove their convergence to optimal predictors. To achieve this, we will leverage the structured prediction framework, which has shown impressive empirical results on a wide range of learning tasks. While theoretical results giving learning rates are available for some algorithms, necessary and sufficient conditions for consistency are not known for structured prediction. We will consequently address this issue, which is of key importance for algorithms that will be applied to life critical applications, e.g. segmentation of brain tumors that will subsequently be targeted by radiation therapy or removed by surgery. Project components will address both theoretical and practical issues.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
- Medizin- und Gesundheitswissenschaften Grundlagenmedizin Anatomie und Morphologie
- Medizin- und Gesundheitswissenschaften Klinische Medizin Chirurgie
- Naturwissenschaften Informatik und Informationswissenschaften künstliche Intelligenz maschinelles Sehen
- Technik und Technologie Elektrotechnik, Elektronik, Informationstechnik Elektrotechnik Sensoren
- Technik und Technologie Medizintechnik diagnostische Bildgebung
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
FP7-PEOPLE-2012-CIG
Andere Projekte für diesen Aufruf anzeigen
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
MC-CIG - Support for training and career development of researcher (CIG)
Koordinator
3000 Leuven
Belgien
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.