Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-06-18

Statistically Efficient Structured Prediction for Computer Vision and Medical Imaging

Ziel

Inference in medical imaging is an important step for disease diagnosis, tissue segmentation, alignment with an anatomical atlas, and a wide range of other applications. However, imperfections in imaging sensors, physical limitations of imaging technologies, and variation in the human population mean that statistical methods are essential for high performance. Statistical learning makes use of human provided ground truth to enable computers to automatically make predictions on future examples without human intervention. At the heart of statistical learning methods is risk minimization - the minimization of the expected loss on a previously unseen image. Textbook methods in statistical learning are not generally designed to minimize the expected loss for loss functions appropriate to medical imaging, which may be asymmetric and non-modular. Furthermore, these methods often do not have the capacity to model interdependencies in the prediction space, such as those arising from spatial priors, and constraints arising from the volumetric layout of human anatomy. We aim to develop new statistical learning methods that have these capabilities, to develop efficient learning algorithms, to apply them to a key task in medical imaging (tumor segmentation), and to prove their convergence to optimal predictors. To achieve this, we will leverage the structured prediction framework, which has shown impressive empirical results on a wide range of learning tasks. While theoretical results giving learning rates are available for some algorithms, necessary and sufficient conditions for consistency are not known for structured prediction. We will consequently address this issue, which is of key importance for algorithms that will be applied to life critical applications, e.g. segmentation of brain tumors that will subsequently be targeted by radiation therapy or removed by surgery. Project components will address both theoretical and practical issues.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

FP7-PEOPLE-2012-CIG
Andere Projekte für diesen Aufruf anzeigen

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

MC-CIG - Support for training and career development of researcher (CIG)

Koordinator

KATHOLIEKE UNIVERSITEIT LEUVEN
EU-Beitrag
€ 58 333,33
Adresse
OUDE MARKT 13
3000 Leuven
Belgien

Auf der Karte ansehen

Region
Vlaams Gewest Prov. Vlaams-Brabant Arr. Leuven
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten

Beteiligte (1)

Mein Booklet 0 0