Obiettivo
Inference in medical imaging is an important step for disease diagnosis, tissue segmentation, alignment with an anatomical atlas, and a wide range of other applications. However, imperfections in imaging sensors, physical limitations of imaging technologies, and variation in the human population mean that statistical methods are essential for high performance. Statistical learning makes use of human provided ground truth to enable computers to automatically make predictions on future examples without human intervention. At the heart of statistical learning methods is risk minimization - the minimization of the expected loss on a previously unseen image. Textbook methods in statistical learning are not generally designed to minimize the expected loss for loss functions appropriate to medical imaging, which may be asymmetric and non-modular. Furthermore, these methods often do not have the capacity to model interdependencies in the prediction space, such as those arising from spatial priors, and constraints arising from the volumetric layout of human anatomy. We aim to develop new statistical learning methods that have these capabilities, to develop efficient learning algorithms, to apply them to a key task in medical imaging (tumor segmentation), and to prove their convergence to optimal predictors. To achieve this, we will leverage the structured prediction framework, which has shown impressive empirical results on a wide range of learning tasks. While theoretical results giving learning rates are available for some algorithms, necessary and sufficient conditions for consistency are not known for structured prediction. We will consequently address this issue, which is of key importance for algorithms that will be applied to life critical applications, e.g. segmentation of brain tumors that will subsequently be targeted by radiation therapy or removed by surgery. Project components will address both theoretical and practical issues.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
- scienze mediche e della salute medicina di base anatomia e morfologia
- scienze mediche e della salute medicina clinica chirurgia
- scienze naturali informatica e scienze dell'informazione intelligenza artificiale visione computerizzata
- ingegneria e tecnologia ingegneria elettrica, ingegneria elettronica, ingegneria informatica ingegneria elettronica sensori
- ingegneria e tecnologia ingegneria medica diagnostica per immagini
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
FP7-PEOPLE-2012-CIG
Vedi altri progetti per questo bando
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
MC-CIG - Support for training and career development of researcher (CIG)
Coordinatore
3000 Leuven
Belgio
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.