Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-06-18

Quantitative methods in stochastic homogenization

Ziel

This proposal deals with the development of quantitative tools in stochastic homogenization, and their applications to materials science. Three main challenges will be addressed.
First, a complete quantitative theory of stochastic homogenization of linear elliptic equations will be developed starting from results I recently obtained on the subject combining tools originally introduced for statistical physics, such as spectral gap and logarithmic Sobolev inequalities, with elliptic regularity theory. The ultimate goal is to prove a central limit theorem for solutions to elliptic PDEs with random coefficients.
The second challenge consists in developing an adaptive multiscale numerical method for diffusion in inhomogeneous media. Many powerful numerical methods were introduced in the last few years, and analyzed in the case of periodic coefficients. Relying on my recent results on quantitative stochastic homogenization, I have made a sharp numerical analysis of these methods, and introduced more efficient variants, so that the three academic examples of periodic, quasi-periodic, and random stationary diffusion coefficients can be dealt with efficiently. The emphasis of this challenge is put on the adaptivity with respect to the local structure of the diffusion coefficients, in order to deal with more complex examples of interest to practitioners.
The last and larger objective is to make a rigorous connection between the continuum theory of nonlinear elastic materials and polymer-chain physics through stochastic homogenization of nonlinear problems and random graphs. Analytic and numerical preliminary results show the potential of this approach. I plan to derive explicit constitutive laws for rubber from polymer chain properties, using the insight of the first two challenges. This requires a good understanding of polymer physics in addition to qualitative and quantitative stochastic homogenization.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

ERC-2013-StG
Andere Projekte für diesen Aufruf anzeigen

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-SG - ERC Starting Grant

Gastgebende Einrichtung

UNIVERSITE PIERRE ET MARIE CURIE - PARIS 6
EU-Beitrag
€ 360 284,73
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten

Begünstigte (3)

Mein Booklet 0 0