Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Polariton networks: from honeycomb lattices to artificial gauge fields

Objectif

Boson gases confined in lattices present fundamental properties which strongly depart from their 3D counterparts. A notorious example is the honeycomb lattice, whose geometry results in massless Dirac-like states. By engineering the phase picked by the particles when tunneling from site to site, lattices also allow for the generation of artificial gauge fields. They result in very strong effective magnetic fields, opening the way to the observation of new quantum Hall regimes in neutral particles. In this context, polaritons appear as an excellent platform for the study of boson fluid effects in confined geometries. Polaritons are two-dimensional half-light/half-matter quasi-particles arising from the strong coupling between quantum well excitons and photons confined in a semiconductor microcavity. They are fully accessible by optical means and present strong non-linear properties. In this project, I will fabricate polariton microsstructures to study mesoscopic physics in 2D lattics.

I will start by studying the non-linear Josephson dynamics in coupled micropillars, and engineer a double tunneling structure showing single polariton blockade. I will then fabricate a graphene-like honeycomb lattice, where I will study transport phenomena such as anomalous (Klein) tunneling and antilocalisation in the presence of disorder, phenomena originating from the Dirac-cone characteristic of honeycomb lattices. In the high density regime, I will investigate non-linear effects, and address the question of superfluidity of massless Dirac particles.

Finally, I will undertake the realization of artificial gauge fields for polaritons. I will adapt to the polariton case a recent theoretical proposal to create artificial gauges in photons using coupled microdisks. Our results will have strong impact on current studies on the transport properties of graphene, of boson gases in atomic condensates, and also on the design of photonic systems with topological protection from disorder.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

ERC-2013-StG
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-SG - ERC Starting Grant

Institution d’accueil

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Contribution de l’UE
€ 1 499 950,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Bénéficiaires (1)

Mon livret 0 0