European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Quantum walks in superconducting networks

Objectif

"I propose to build a general purpose continuous quantum walk platform using superconducting devices (resonators, qubits and SQUIDS). This system will include up to 40 sites and will implement basic quantum simulation algorithms, generalized interferometry and explore the quantum-classical boundary for many-particle entangled systems.
Quantum walks (QW) are a novel scheme for quantum information processing. The core idea is to encode the problem into a network and propagate quantum particles within. The entanglement of the many-body state due to interference between sites of the network brings, at the appropriate time, to a desired answer/observable. Recent implementations with optical photons or trapped ions and atoms have brought this theoretical process to the forefront of fundamental and applied quantum engineering.
In parallel, superconducting devices are experiencing a renaissance due to modern understanding of materials, fundamental physics of superconductivity and fabrication techniques. The coherence times of superconducting qubits have improved by almost 5 (!) orders of magnitude over the past ten years. Recent developments include single microwave sources and detectors, quantum-limited amplifiers, heterodyne techniques for measurement and state tomography.
Building such a network involves significant challenges, both fundamental and technical. On the fundamental level I intend to improve coherence times of our devices by advanced material science characterization, simulation tools and rapid turn-around characterization. My group will build a ""quantum compiler"" system for designing new layouts, bridging abstract design to implementation. On the technical level we will implement a flip chip bias circuit to overcome site inhomogeneity and for evolving and measuring results. This will be an enabling system for a broad range of quantum information processing applications and fundamental experiments, with unprecedented computational power and flexibility."

Appel à propositions

ERC-2013-StG
Voir d’autres projets de cet appel

Régime de financement

ERC-SG - ERC Starting Grant

Institution d’accueil

THE HEBREW UNIVERSITY OF JERUSALEM
Contribution de l’UE
€ 1 317 560,00
Adresse
EDMOND J SAFRA CAMPUS GIVAT RAM
91904 Jerusalem
Israël

Voir sur la carte

Type d’activité
Higher or Secondary Education Establishments
Chercheur principal
Nadav Katz (Dr.)
Contact administratif
Hani Ben-Yehuda (Ms.)
Liens
Coût total
Aucune donnée

Bénéficiaires (1)