Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Visual Recognition Made Super-Scalable

Objectif

Hundreds of billions of images are hosted on the World Wide Web. There is a huge interest in mining information in large image collections based on visual content. Direct applications are the automatic organization of visual datasets, visual navigation, object recognition, and the traditional query-by-sample search.

Although recent breakthroughs allow the search in millions of images on a single server with increasing quality, the accuracy of automatic recognition remains low compared to human’s visual analysis. I believe that significant progress is still achievable by a major shift in the paradigm underpinning the image representation: an image should be described with respect to the context provided by the image collection.

The main objective of VIAMASS is to automatically discover visual links within a very large collection of images. These “visual hyper-links” will connect the objects across the images of the collection. This raises a major obstacle with respect to scalability: cross matching all the images is of quadratic complexity when performed with a brute-force approach. To this end, VIAMASS addresses issues at the frontier of the current state of the art in computer vision and signal processing: How to exploit the context provided by the collection to enrich the image representation? How to exploit and magnify recent signal processing and coding techniques to efficiently compare sets of vectors? How to automatically produce geometrical models of objects with little or no supervision? At the end, the ultimate challenge is to invent scalable solutions for the automatic discovery of visual links across images.

My research program impacts the whole processing chain of visual search, from the description level to the mining algorithms that will break the complexity lock.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

ERC-2013-StG
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-SG - ERC Starting Grant

Institution d’accueil

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE
Contribution de l’UE
€ 1 498 627,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Bénéficiaires (1)

Mon livret 0 0