Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-06-18

Visual Recognition Made Super-Scalable

Cel

Hundreds of billions of images are hosted on the World Wide Web. There is a huge interest in mining information in large image collections based on visual content. Direct applications are the automatic organization of visual datasets, visual navigation, object recognition, and the traditional query-by-sample search.

Although recent breakthroughs allow the search in millions of images on a single server with increasing quality, the accuracy of automatic recognition remains low compared to human’s visual analysis. I believe that significant progress is still achievable by a major shift in the paradigm underpinning the image representation: an image should be described with respect to the context provided by the image collection.

The main objective of VIAMASS is to automatically discover visual links within a very large collection of images. These “visual hyper-links” will connect the objects across the images of the collection. This raises a major obstacle with respect to scalability: cross matching all the images is of quadratic complexity when performed with a brute-force approach. To this end, VIAMASS addresses issues at the frontier of the current state of the art in computer vision and signal processing: How to exploit the context provided by the collection to enrich the image representation? How to exploit and magnify recent signal processing and coding techniques to efficiently compare sets of vectors? How to automatically produce geometrical models of objects with little or no supervision? At the end, the ultimate challenge is to invent scalable solutions for the automatic discovery of visual links across images.

My research program impacts the whole processing chain of visual search, from the description level to the mining algorithms that will break the complexity lock.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

ERC-2013-StG
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-SG - ERC Starting Grant

Instytucja przyjmująca

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE
Wkład UE
€ 1 498 627,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych

Beneficjenci (1)

Moja broszura 0 0