Objectif
We will use modern techniques in algebraic geometry, originating from string theory and mirror symmetry, to study fundamental problems of classical flavour. More concretely, we apply wall-crossing in the derived category to the birational geometry of moduli spaces.
Bridgeland stability is a notion of stability for complexes in the derived category. Wall-crossing describes how moduli spaces of stable complexes change under deformation of the stability condition, often via a birational surgery occurring in its minimal model program (MMP). This relates wall-crossing to the most basic question of algebraic geometry, the classification of algebraic varieties.
Our previous results additionally provide a very direct connection between Bridgeland stability conditions and positivity of divisors, the main tool of modern birational geometry. This makes the above link significantly more effective, precise and useful. We will exploit this in the following long-term projects:
1. Prove a Bogomolov-Gieseker type inequality for threefolds that we conjectured previously. This would provide a solution in dimension three to well-known open problems of seemingly completely different nature: the existence of Bridgeland stability conditions, Fujita's conjecture on very ampleness of adjoint line bundles, and projective normality of toric varieties.
2. Study the birational geometry of moduli space of sheaves via wall-crossing, adding more geometric meaning to their MMP.
3. Prove that the MMP for local Calabi-Yau threefolds is completely induced by deformation of Bridgeland stability conditions. The motivation is a derived version of the Kawamata-Morrison cone conjecture, classical questions on Chern classes of stable bundles, and mirror symmetry.
4. Answer major open questions on the birational geometry of the moduli space of genus zero curves (for example, the F-conjecture) using exceptional collections in the derived category and wall-crossing.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- sciences médicales et de la santé médecine clinique chirurgie
- sciences naturelles sciences physiques physique théorique théorie des cordes
- sciences naturelles mathématiques mathématiques pures géométrie
- sciences naturelles mathématiques mathématiques pures algèbre géométrie algébrique
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
ERC-2013-StG
Voir d’autres projets de cet appel
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Institution d’accueil
EH8 9YL Edinburgh
Royaume-Uni
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.