Obiettivo
We will use modern techniques in algebraic geometry, originating from string theory and mirror symmetry, to study fundamental problems of classical flavour. More concretely, we apply wall-crossing in the derived category to the birational geometry of moduli spaces.
Bridgeland stability is a notion of stability for complexes in the derived category. Wall-crossing describes how moduli spaces of stable complexes change under deformation of the stability condition, often via a birational surgery occurring in its minimal model program (MMP). This relates wall-crossing to the most basic question of algebraic geometry, the classification of algebraic varieties.
Our previous results additionally provide a very direct connection between Bridgeland stability conditions and positivity of divisors, the main tool of modern birational geometry. This makes the above link significantly more effective, precise and useful. We will exploit this in the following long-term projects:
1. Prove a Bogomolov-Gieseker type inequality for threefolds that we conjectured previously. This would provide a solution in dimension three to well-known open problems of seemingly completely different nature: the existence of Bridgeland stability conditions, Fujita's conjecture on very ampleness of adjoint line bundles, and projective normality of toric varieties.
2. Study the birational geometry of moduli space of sheaves via wall-crossing, adding more geometric meaning to their MMP.
3. Prove that the MMP for local Calabi-Yau threefolds is completely induced by deformation of Bridgeland stability conditions. The motivation is a derived version of the Kawamata-Morrison cone conjecture, classical questions on Chern classes of stable bundles, and mirror symmetry.
4. Answer major open questions on the birational geometry of the moduli space of genus zero curves (for example, the F-conjecture) using exceptional collections in the derived category and wall-crossing.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
- scienze mediche e della salute medicina clinica chirurgia
- scienze naturali scienze fisiche fisica teoretica teoria delle stringhe
- scienze naturali matematica matematica pura geometria
- scienze naturali matematica matematica pura algebra geometria algebrica
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
ERC-2013-StG
Vedi altri progetti per questo bando
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Istituzione ospitante
EH8 9YL Edinburgh
Regno Unito
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.