Skip to main content
European Commission logo
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Inhalt archiviert am 2024-05-28

The origins of stellar properties

Ziel

"Less than a century ago it was realised that stars are still forming in our Galaxy today. Over the decades since, the questions of what physical processes dominate the star formation process and how the statistical properties of stars are determined have been some of the key questions in astrophysics. Recently, I have advanced numerical simulations of star formation to the point that, for the first time, we can reproduce a wide range of the observed statistical properties of stars and brown dwarfs.
Here I propose an ambitious project that will make a step change in star formation theory and produce a truly predictive theory of star formation, as opposed to the past state of the field where we have been constantly searching for a mixture of initial conditions and physical processes that can reproduce the stellar properties that we observe. The project will involve substantial numerical code development, culminating in a fluid dynamical code that incorporates all of the major physical processes thought to influence star formation, including radiative transfer, non-ideal magnetohydrodynamics, dust, and chemistry. The scientific outputs will be the determination of how each physical process affects the star formation process, and a wide range of predictions of how stellar properties should vary in different environments and with different initial conditions. These predictions will give direction to, and be tested by, the next generation of observational surveys of star-forming regions and stellar systems, while at the same time may be employed to improve our understanding of how star formation affects galaxy formation and evolution and how the variation in stellar properties impacts the diversity of planetary systems."

Aufforderung zur Vorschlagseinreichung

ERC-2013-ADG
Andere Projekte für diesen Aufruf anzeigen

Gastgebende Einrichtung

THE UNIVERSITY OF EXETER
EU-Beitrag
€ 1 706 418,00
Adresse
THE QUEEN'S DRIVE NORTHCOTE HOUSE
EX4 4QJ Exeter
Vereinigtes Königreich

Auf der Karte ansehen

Region
South West (England) Devon Devon CC
Aktivitätstyp
Higher or Secondary Education Establishments
Kontakt Verwaltung
Sarah Hill (Ms.)
Hauptforscher
Matthew Bate (Prof.)
Links
Gesamtkosten
Keine Daten

Begünstigte (1)