Objetivo
"The project lies at the crossroads between three different topics in Mathematics: moduli spaces of flat connections on surfaces in Differential Geometry and Topology, the Kashiwara-Vergne problem and Drinfeld associators in Lie theory, and combinatorics of planar networks in the theory of Total Positivity.
The time is ripe to establish deep connections between these three theories. The main factors are the recent progress in the Kashiwara-Vergne theory (including the proof of the Kashiwara-Vergne conjecture by Alekseev-Meinrenken), the discovery of a link between the Horn problem on eigenvalues of sums of Hermitian matrices and planar network combinatorics, and intimate links with the Topological Quantum Field Theory shared by the three topics.
The scientific objectives of the project include answering the following questions:
1) To find a universal non-commutative volume formula for moduli of flat connections which would contain the Witten’s volume formula, the Verlinde formula, and the Moore-Nekrasov-Shatashvili formula as particular cases.
2) To show that all solutions of the Kashiwara-Vergne problem come from Drinfeld associators. If the answer is indeed positive, it will have applications to the study of the Gothendieck-Teichmüller Lie algebra grt.
3) To find a Gelfand-Zeiltin type integrable system for the symplectic group Sp(2n). This question is open since 1983.
To achieve these goals, one needs to use a multitude of techniques. Here we single out the ones developed by the author:
- Quasi-symplectic and quasi-Poisson Geometry and the theory of group valued moment maps.
- The linearization method for Poisson-Lie groups relating the additive problem z=x+y and the multiplicative problem Z=XY.
- Free Lie algebra approach to the Kashiwara-Vergne theory, including the non-commutative divergence and Jacobian cocylces.
- Non-abelian topical calculus which establishes a link between the multiplicative problem and combinatorics of planar networks."
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
- ciencias naturales matemáticas matemáticas puras topología
- ciencias naturales ciencias físicas física cuántica teoría cuántica de campos
- ciencias naturales matemáticas matemáticas puras álgebra
- ciencias naturales matemáticas matemáticas puras geometría
- ciencias naturales matemáticas matemáticas puras matemáticas discretas combinatrónica
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
ERC-2013-ADG
Consulte otros proyectos de esta convocatoria
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Institución de acogida
1211 Geneve
Suiza
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.